Abstract

microRNAs (miRNAs) are a group of small non-coding RNA molecules known to regulate target genes at the post-transcriptional level. miRNAs are implicated in the regulation of multiple pathophysiological processes including dyslipidemia, a major risk factor for atherosclerosis. Emerging evidence suggests that miRNAs act as a novel class of epigenetic regulators of high-density lipoproteins cholesterol (HDL-C) from synthesis to clearance contributing remarkably to the pathogenesis of atherosclerosis. Accumulating studies have revealed that miRNAs such as miR-33, miR-27, miR-144, miR-758 and miR-20 are involved in the post-transcriptional control of ABCA1, ABCG1 and SCARB1 genes regulatory network of the reverse cholesterol transport (RCT). These miRNAs have been shown to be central players in the impairment of RCT pathway leading to the development of atherosclerosis. In this article, we present most recent understanding of involvement of relevant miRNAs in different steps of HDL metabolism and RCT pathway. We also discuss some of the actual limitations to the promise of these miRNAs and perspectives on their translation to clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.