Abstract

Understanding the cellular and molecular mechanisms that specify cell lineages throughout development, and that maintain tissue homeostasis during adulthood, is paramount towards our understanding of why we age or develop pathologies such as cancer. Epigenetic mechanisms ensure that genetically identical cells acquire different fates during embryonic development and are therefore essential for the proper progression of development. How they do so is still a matter of intense investigation, but there is sufficient evidence indicating that they act in a concerted manner with inductive signals and tissue-specific transcription factors to promote and stabilize fate changes along the three germ layers during development. In consequence, it is generally hypothesized that epigenetic mechanisms are also required for the continuous maintenance of cell fate during adulthood. However, in vivo models in which different epigenetic factors have been depleted in different tissues do not show overt changes in cell lineage, thus not strongly supporting this view. Instead, the function of some of these factors appears to be primarily associated with tissue functionality, and a strong causal relationship has been established between their misregulation and a diseased state. In this review, we summarize our current knowledge of the role of epigenetic factors in adult stem cell function and tissue homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.