Abstract
As sessile organisms, plants have evolved sophisticated regulatory systems because they must respond to a variety of environmental stimuli. Salt stress, in particular, affects the growth of crop plants and limits crop yield in many saline regions around the world. Therefore, developing salt-tolerant crop cultivars has great significance in global food security. Epigenetic regulation, which contributes to phenotype plasticity without altering the genotype, have important roles in how plant respond to salt stress. Moreover, the heritable nature of epigenetic modifications makes it possible to maintain the information and pass it down to the next generation as stress memory, thus enables the plant and its progeny to cope with recuring stress more efficiently. This paper provides an overview of major achievements in this field by analyzing previous studies, and concludes that major epigenetic regulatory pathways, including histone modifications, DNA modifications and small RNAs, are essential in plant salt stress response, and further insights into these mechanisms are of great value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.