Abstract

Epigenetic mechanisms provide an adaptive layer of control in the regulation of gene expression that enables an organism to adjust to a changing environment. Epigenetic regulation increases the functional complexity of deoxyribonucleic acid (DNA) by altering chromatin structure, nuclear organization, and transcript stability. These changes may additively or synergistically influence gene expression and result in long-term molecular and functional consequences independent of the DNA sequence that may ultimately define an individual's phenotype. This article (1) describes histone modification, DNA methylation, and expression of small noncoding RNA species; (2) reviews the most common methods used to measure these epigenetic changes; and (3) presents factors that need to be considered when choosing a specific tissue to evaluate for epigenetic changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.