Abstract

Pediatric high-grade gliomas (pHGG) are a molecularly diverse group of malignancies, each incredibly aggressive and in dire need of treatment advancements. Genomic analysis has revolutionized our understanding of these tumors, identifying biologically relevant subgroups with differing canonical mutational profiles that vary based on tumor location and age. In particular, the discovery of recurrent histone H3 mutations (H3K27M in diffuse midline glioma, H3G34R/V in hemispheric pediatric high-grade gliomas) as unique "oncohistone" drivers revealed epigenetic dysregulation as a hallmark of pediatric high-grade gliomas oncogenesis. While reversing this signature through epigenetic programming has proven effective in several pre-clinical survival models, early results from pediatric high-grade gliomas clinical trials suggest that epigenetic modifier monotherapy will likely not provide long-term disease control. In this review we summarize the genetic, epigenetic, and cellular heterogeneity of pediatric high-grade gliomas, and highlight potential paths forward for epigenetic programming in this devastating disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.