Abstract
How high salt intake increases blood pressure is a key question in the study of hypertension. Salt intake induces increased renal sympathetic activity resulting in sodium retention. However, the mechanisms underlying the sympathetic control of renal sodium excretion remain unclear. In this study, we found that β(2)-adrenergic receptor (β(2)AR) stimulation led to decreased transcription of the gene encoding WNK4, a regulator of sodium reabsorption. β(2)AR stimulation resulted in cyclic AMP-dependent inhibition of histone deacetylase-8 (HDAC8) activity and increased histone acetylation, leading to binding of the glucocorticoid receptor to a negative glucocorticoid-responsive element in the promoter region. In rat models of salt-sensitive hypertension and sympathetic overactivity, salt loading suppressed renal WNK4 expression, activated the Na(+)-Cl(-) cotransporter and induced salt-dependent hypertension. These findings implicate the epigenetic modulation of WNK4 transcription in the development of salt-sensitive hypertension. The renal β(2)AR-WNK4 pathway may be a therapeutic target for salt-sensitive hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.