Abstract

BackgroundResistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis. Beside promoter methylation of the O 6 -methylguanine-DNA-methyltransferase (MGMT) gene the efflux transporters ABCB1 and ABCG2 have been suggested as pivotal factors contributing to drug resistance, but the methylation of ABCB1 and ABCG2 has not been assessed before in GBM.MethodsTherefore, we evaluated the proportion and prognostic significance of promoter methylation of MGMT, ABCB1 and ABCG2 in 64 GBM patient samples using pyrosequencing technology. Further, the single nucleotide polymorphisms MGMT C-56 T (rs16906252), ABCB1 C3435T (rs1045642) and ABCG2 C421A (rs2231142) were determined using the restriction fragment length polymorphism method (RFLP). To study a correlation between promoter methylation and gene expression, we analyzed MGMT, ABCB1 and ABCG2 expression in 20 glioblastoma and 7 non-neoplastic brain samples.ResultsDespite a significantly increased MGMT and ABCB1 promoter methylation in GBM tissue, multivariate regression analysis revealed no significant association between overall survival of glioblastoma patients and MGMT or ABCB1 promoter methylation. However, a significant negative correlation between promoter methylation and expression could be identified for MGMT but not for ABCB1 and ABCG2. Furthermore, MGMT promoter methylation was significantly associated with the genotypes of the MGMT C-56 T polymorphism showing a higher methylation level in the T allele bearing GBM.ConclusionsIn summary, the data of this study confirm the previous published relation of MGMT promoter methylation and gene expression, but argue for no pivotal role of MGMT, ABCB1 and ABCG2 promoter methylation in GBM patients’ survival.

Highlights

  • Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis

  • In our study we found a significantly increased MGMT and ABCB1 promoter methylation in GBM tissue but couldn’t demonstrate any association of MGMT, ABCB1 or ABCG2 promoter methylation with overall survival of glioblastoma patients in multivariate Cox models adjusted for potential risk factors and stratified on the variable therapy

  • In summary, our study represents a combined investigation of promoter methylation and gene polymorphisms of the pivotal drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme

Read more

Summary

Introduction

Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis. The MGMT functions as a DNA repair enzyme, which repairs alkylating lesions of the DNA by removing mutagenic adducts from the O6 position of guanine, e.g. caused by the chemotherapeutic agent temozolomide [5]. It confers drug resistance and the therapeutic response to alkylating agents is improved in tumor cells expressing low levels of MGMT [5]. MGMT promoter methylation was demonstrated to result in decreased MGMT expression and correlates with a survival benefit in glioblastoma patients treated with alkylating chemotherapeutics such as temozolomide [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call