Abstract

Acute lung injury (ALI) during sepsis is characterized by bilateral alveolar infiltrates, lung edema and respiratory failure. Here, we examined the efficacy the DNA methyl transferase (DNMT) inhibitor 5-Aza 2-deoxycytidine (Aza), the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), as well as the combination therapy of Aza and TSA (Aza+TSA) provides in the protection of ALI. In LPS-induced mouse ALI, post-treatment with a single dose of Aza+TSA showed substantial attenuation of adverse lung histopathological changes and inflammation. Importantly, these protective effects were due to substantial macrophage phenotypic changes observed in LPS-stimulated macrophages treated with Aza+TSA as compared with untreated LPS-induced macrophages or LPS-stimulated macrophages treated with either drug alone. Further, we observed significantly lower levels of pro-inflammatory molecules and higher levels of anti-inflammatory molecules in LPS-induced macrophages treated with Aza+TSA than in LPS-induced macrophages treated with either drug alone. The protection was ascribed to dual effects by an inhibition of MAPK-HuR-TNF and activation of STAT3-Bcl2 pathways. Combinatorial treatment with Aza+TSA reduces inflammation and promotes an anti-inflammatory M2 macrophage phenotype in ALI, and has a therapeutic potential for patients with sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.