Abstract
DNA methylation is an epigenetic modification that influences gene transcription; however, the effects of methylation-influencing chemicals on appetite are unknown. We evaluated the effects of single administration of a methyl donor, S-Adenosylmethionine (SAM), or methylation inhibitor, 5-Azacytidine (AZA), on immediate and later-age food intake in an anorexic chick model. The doses of intracerebroventricularly-injected SAM were 0 (vehicle), 0.1, 1, and 10 μg, and of AZA were 0 (vehicle), 1, 5, and 25 μg. When injected on day 5 posthatch, there was no effect of SAM on food intake in either fed or fasted chicks, whereas AZA increased food consumption in the fasted state but decreased it in fed chicks. We then performed a single injection (same doses) at hatch and measured food intake on day 5 in response to neuropeptide Y (NPY; 0.2 μg) injection. Irrespective of NPY, chicks injected with 1 μg of SAM ate more than others on day 5. In contrast, chicks injected with AZA (5 and 25 μg doses) consumed less on day 5. In conclusion, we identified DNA methylation-regulating chemicals as regulators of food intake. AZA but not SAM affected food intake in the short-term, feeding state dependently. Later, both chemicals injected on the day of hatch were associated with food intake changes at a later age, suggesting that feeding pathways might be altered through changes in methylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.