Abstract

Pregnane X receptor (PXR), which can be activated by xenobiotic chemicals (including pediatric drugs), plays a key role in the regulation of drug-processing genes (DPGs). The induction of DPGs due to PXR activation may reduce therapeutic efficacy or cause toxicity. This work aims to demonstrate the impact of pregnenolone 16α-carbonitrile (PCN)-mediated PXR activation during early life on DPGs expression and drug sensitivity in adulthood, as well as the underlying mechanism. In this study, mice were sacrificed at postnatal day 60 to detect the hepatic expression of selected DPGs and histone modifications in the Cyp3a11 promoter. We found that all doses of PCN treatment (50-200 mg/kg/day) at postnatal days 5-8 resulted in persistently increased CYP2B10 expression, whereas only high doses of PCN treatment (150 and 200 mg/kg/day) persistently induced the expression of CYP3A11, 1A2, and UGT1A1. We also demonstrated that PCN treatment before postnatal day 15 had a long-term impact on the expression of CYP3A11, 2B10, ABCC4, and PAPSS2. Additionally, elevated expression of CYP3A11, SULT2A1, UGT1A1, and PAPSS2 was observed in PCN-treated groups at days 25-28. Attenuated inducibility of CYP3A11 by PCN was seen in the primary hepatocytes derived from PCN-pretreated mice. Moreover, enhanced H3K4me3 level and reduced H3K27me3 level in the PXR response elements (PXREs) of the Cyp3a11 promoter may contribute to the persistent upregulation of CYP3A11 by neonatal PCN treatment. Overall, our study suggests that PXR activation during early life could persistently alter the hepatic expression of DPGs and epigenetic memory may be an underlying mechanism in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call