Abstract
Hypoxic preconditioning is a pre-exposure to the repetitive mild hypoxia which results in development of brain hypoxic/ischemic tolerance and cross-tolerance to injurious factors of another nature. The endogenous defense processes mobilized by hypoxic preconditioning and resulting in formation of brain tolerance are based on evolutionary acquired gene-determined mechanisms of neuroprotection and adaptation. Key event is an activation of pro-adaptive transcriptional factors HIF-1, CREB, NF-kB, c-Fos, NGFI-A and down-stream expression of their target genes in vulnerable brain neurons. An important role can thus be suggested for the epigenetic regulation of gene expression, in particular, acetylation of core nucleosome histones leading to changes in chromatin structure which ensure access of the transcriptional factors activated by the preconditioning to the promoters of target genes. It has been shown that hypoxic preconditioning considerably increases an acetylation status of all histones and, particularly, H3 in the neurons of rat hippocampus and neocortex, whereas injurious severe hypoxia causes global repression of histone acetylation. Diverse effects of the severe hypoxia and mild hypoxic preconditioning on the methylation of DNA and histones have also been observed. The complex of the epigenetic modifications induced by the hypoxic preconditioning is attributed to the relaxed DNA which becomes available for activation of gene expression by pro-adaptive transcriptional factors up-regulated by the preconditioning.
Highlights
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia
The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression
No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression
Summary
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.