Abstract

BackgroundIndividuals of the same chronological age display different rates of biological ageing. A number of measures of biological age have been proposed which harness age-related changes in DNA methylation profiles. These measures include five ‘epigenetic clocks’ which provide an index of how much an individual’s biological age differs from their chronological age at the time of measurement. The five clocks encompass methylation-based predictors of chronological age (HorvathAge, HannumAge), all-cause mortality (DNAm PhenoAge, DNAm GrimAge) and telomere length (DNAm Telomere Length). A sixth epigenetic measure of ageing differs from these clocks in that it acts as a speedometer providing a single time-point measurement of the pace of an individual’s biological ageing. This measure of ageing is termed DunedinPoAm. In this study, we test the association between these six epigenetic measures of ageing and the prevalence and incidence of the leading causes of disease burden and mortality in high-income countries (n ≤ 9537, Generation Scotland: Scottish Family Health Study).ResultsDNAm GrimAge predicted incidence of clinically diagnosed chronic obstructive pulmonary disease (COPD), type 2 diabetes and ischemic heart disease after 13 years of follow-up (hazard ratios = 2.22, 1.52 and 1.41, respectively). DunedinPoAm predicted the incidence of COPD and lung cancer (hazard ratios = 2.02 and 1.45, respectively). DNAm PhenoAge predicted incidence of type 2 diabetes (hazard ratio = 1.54). DNAm Telomere Length associated with the incidence of ischemic heart disease (hazard ratio = 0.80). DNAm GrimAge associated with all-cause mortality, the prevalence of COPD and spirometry measures at the study baseline. These associations were present after adjusting for possible confounding risk factors including alcohol consumption, body mass index, deprivation, education and tobacco smoking and surpassed stringent Bonferroni-corrected significance thresholds.ConclusionsOur data suggest that epigenetic measures of ageing may have utility in clinical settings to complement gold-standard methods for disease assessment and management.

Highlights

  • Individuals of the same chronological age display different rates of biological ageing

  • Values for all phenotypes were comparable between discovery and replication cohorts with the exception of DNA methylation (DNAm) GrimAge, and the incidence of self-reported depression, and SCID (Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (DSM))-identified Depression

  • Age-adjusted measures of DNAm Telomere Length associated with the incidence of ischemic heart disease

Read more

Summary

Introduction

Individuals of the same chronological age display different rates of biological ageing. A number of measures of biological age have been proposed which harness age-related changes in DNA methylation profiles These measures include five ‘epigenetic clocks’ which provide an index of how much an individual’s biological age differs from their chronological age at the time of measurement. A sixth epigenetic measure of ageing differs from these clocks in that it acts as a speedometer providing a single time-point measurement of the pace of an individual’s biological ageing This measure of ageing is termed DunedinPoAm. In this study, we test the association between these six epigenetic measures of ageing and the prevalence and incidence of the leading causes of disease burden and mortality in high-income countries (n ≤ 9537, Generation Scotland: Scottish Family Health Study). Given the number of individuals affected by such disorders and the associated burden, there is an urgent need for effective molecular predictors in clinical settings that can identify individuals on trajectories towards disease

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call