Abstract

Objective: Our objective was to determine whether there were significant differences in genome-wide DNA methylation in newborns with major congenital heart defect (CHD) compared to controls. We also evaluated methylation of cytosines in CpG motifs for the detection of these CHDs.Methods: Genome-wide DNA methylation analysis was performed on DNA from 60 newborns with various CHDs, including hypoplastic left heart syndrome, ventricular septal deficit, atrial septal defect, pulmonary stenosis, coarctation of the aorta and Tetralogy of Fallot, and 32 controls.Results: Highly significant differences in cytosine methylation were seen in a large number of genes throughout the genome for all CHD categories. Gene ontology analysis of CHD overall indicated over-represented biological processes involving cell development and differentiation, and anatomical structure morphogenesis. Methylation of individual cytosines in CpG motifs had high diagnostic accuracy for the detection of CHD. For example, for coarctation one predictive model based on levels of particular cytosine nucleotides achieved a sensitivity of 100% and specificity of 93.8% (AUC = 0.974, p < 0.00001).Conclusion: Profound differences in cytosine methylation were observed in hundreds of genes in newborns with different types of CHD. There appears to be the potential for development of accurate genetic biomarkers for CHD detection in newborns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.