Abstract

Epigenetic manipulation of a deep-sea sediment-derived Spiromastix sp. fungus using suberoylanilide hydroxamic acid (SAHA) induction resulted in the activation of a terpene-related biosynthetic gene cluster, and nine new guaiane-type sesquiterpenes, spiromaterpenes A-I (1-9), were isolated. Their structures were determined using various spectroscopic techniques, in association with the modified Mosher's method, computed electronic circular dichroism (ECD) spectra, and chemical conversion for configurational assignments. Compounds 4-6 exhibited significant effects against the NO production on lipopolysaccharide (LPS)-induced microglia cells BV2, and the preliminary SAR analyses demonstrated that a 2(R),11-diol unit is favorable. The most active 5 abolished LPS-induced NF-κB translocation from the cytosol to the nucleus in BV-2 microglial cells, accompanied by the marked reduction of the transcription levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α dose-dependently in both LPS-induced BV-2 and BV-2 cells, as well as the protein and mRNA levels of iNOS and COX-2. This study complements the gap in knowledge regarding the anti-neuroinflammatory activity of guaiane-type sesquiterpenoids at the cellular level and suggests that 5 is promising for further optimization as a multifunctional agent for antineuroinflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.