Abstract
The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are still largely unclear. To address the role of chromatin structure in maintenance of pluripotency in human ESCs (hESCs) and establishment of lineage commitment, we analyzed a panel of histone modifications at promoter sequences of genes involved in maintenance of pluripotency, self-renewal, and in early stages of differentiation. To understand the changes occurring at lineage-specific gene regulatory sequences, we have established an efficient purification system that permits the examination of two distinct populations of lineage committed cells; fluorescence activated cell sorted CD133(+) CD45(-)CD34(-) neural stem cells and beta-III-tubulin(+) putative neurons. Here we report the importance of other permissive marks supporting trimethylation of Lysine 4 H3 at the active stem cell promoters as well as poised bivalent and nonbivalent lineage-specific gene promoters in hESCs. Methylation of lysine 9 H3 was found to play a role in repression of pluripotency-associated and lineage-specific genes on differentiation. Moreover, presence of newly formed bivalent domains was observed at the neural progenitor stage. However, they differ significantly from the bivalent domains observed in hESCs, with a possible role of dimethylation of lysine 9 H3 in repressing the poised genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.