Abstract

The NPY phenotype expressed in a subset of rat neocortical neurons is influenced by a variety of epigenetic factors. In the present study, we analyzed the role of synaptically driven spontaneous bioelectric (action potential) activity (SBA) and neurotrophic factors. Our model systems are organotypic monocultures of visual cortex which either grow as spontaneously active cultures or as activity-blocked cultures to which neurotrophic factors can be applied via the medium. NPY mRNA expressing neurons are detected by in situ hybridization and are quantified as a percentage of all neurons. In spontaneously active cultures, about 7% of all neurons express NPY mRNA. This expression is regulated by SBA, because expression is reduced to about 2% by different activity blockade paradigms. When putative NPY neurons differentiate under activity blockade, they are unable to restitute the NPY expression during a subsequent period of SBA. A restitution of the NPY phenotype in 6–7% of the neurons after a transient blockade of activity is only possible when neurons were initially allowed to differentiate in the presence of SBA. We then analyzed whether neurotrophic factors known to promote NPY expression can do so in the absence of SBA. Neurotrophin-4/5 and leukemia inhibitory factor, but not brain-derived neurotrophic factor and neurotrophin-3, stimulate the NPY phenotype in the absence of SBA. In situ hybridization in combination with immuno-fluorescence reveals that NPY-ir neurons express the receptors trkB or LIFRβ, but not trkC. This coexpression pattern explains why neurotrophin-4/5 and leukemia inhibitory factor are efficient regulators of the NPY-expression. Our results suggest that the NPY expression in neocortical neurons depends on epigenetic factors: spontaneous activity and neurotrophic factors modulate the expression and are thus involved in shaping the neurochemical architecture of the cerebral cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.