Abstract

Cardiac fibroblasts (CFs) drive extracellular matrix remodeling after inflammatory injury, leading to cardiac fibrosis and diastolic dysfunction. Recent studies described the role of epigenetics in cardiac fibrosis. Nevertheless, detailed reports on epigenetics regulating CFs pyroptosis and describing their implication in cardiac fibrosis are still unclear. Here, we found that DNMT3A reduces the expression of lncRNA Neat1 and promotes the NLRP3 axis leading to CFs pyroptosis, using cultured cells, animal models, and clinical samples to shed light on the underlying mechanism. We report that pyroptosis-related genes are increased explicitly in cardiac fibrosis tissue and LPS-treated CFs, while lncRNA Neat1 decreased. Mechanistically, we show that loss of DNMT3A or overexpression of lncRNA Neat1 in CFs after LPS treatment significantly enhances CFs pyroptosis and the production of pyroptosis-related markers in vitro. It has been demonstrated that DNMT3A can decrease lncRNA Neat1, promoting NLRP3 axis activation in CFs treated with LPS. In sum, this study is the first to identify that DNMT3A methylation decreases the expression of lncRNA Neat1 and promotes CFs pyroptosis and cardiac fibrosis, suggesting that DNMT3A and NEAT1 may function as an anti-fibrotic therapy target in cardiac fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.