Abstract
Apoptotic bodies are the most condensed form of chromatin. In general, chromatin structure and function are mostly dictated by histone post-translational modifications. Thus, we have analyzed the histone signature in apoptotic cells, characterized by pronounced chromatin condensation. Here, H2B mono-acetylation, and H3K9 and H4 acetylation was significantly decreased in apoptotic cells, which maintained a high level of H3K9 methylation. This phenotype was independent of p53 function and distinct levels of anti-apoptotic Bcl2 protein. Interestingly, after etoposide treatment of leukemia and multiple myeloma cells, H3K9 and H4 hypoacetylation was accompanied by increased H3K9me2, but not H3K9me1 or H3K9me3. In adherent mouse fibroblasts, a high level of H3K9me3 and histone deacetylation in apoptotic bodies was likely responsible for the pronounced (∼40%) recovery of GFP-HP1α and GFP-HP1β after photobleaching. HP1 mobility in apoptotic cells appeared to be unique because limited exchange after photobleaching was observed for other epigenetically important proteins, including GFP-JMJD2b histone demethylase (∼10% fluorescence recovery) or Polycomb group-related GFP-BMI1 protein (∼20% fluorescence recovery). These findings imply a novel fact that only certain subset of proteins in apoptotic bodies is dynamic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.