Abstract

This is the first known comparative assessment of the associations of epigenetic age estimates with the prevalence of rheumatoid arthritis (RA). We used data available in Gene Expression Omnibus (GSE42861) from the Swedish Epidemiological Investigation of Rheumatoid Arthritis study. Information regarding RA diagnosis and 450K DNA methylation (DNAm) of 18- to 70-year-old participants was available. Utilizing Horvath's online DNAm Age Calculator, we determined the DNAm estimate of Telomere length (DNAmTL), Hannum's epigenetic age, Horvath's 2013 and 2018 epigenetic ages, PhenoAge, GrimAge, and the respective age-acceleration measures. The association of RA prevalence with epigenetic age measures was assessed using linear regression, adjusting for sex and smoking status. The p values were corrected for multiple testing using a false discovery rate. We identified statistically significant associations of RA with Horvath 2013 age acceleration (estimate: -1.34; FDR p value: 1.0 × 10-2), Horvath 2018 age acceleration (estimate: -1.32; FDR p value: 4.0 × 10-5), extrinsic age acceleration (estimate: 1.34; FDR p value: 1.0 × 10-2), PhenoAge acceleration (estimate: 2.31; FDR p value: 1.1 × 10-5), GrimAge (estimate: 2.54; FDR p value: 1.0 × 10-2), and GrimAge acceleration (estimate: 3.15; FDR p-value: 1.7 × 10-17). Of note, the raw and age-adjusted GrimAge surrogate DNAm protein components were significantly higher in RA cases than controls. Interestingly, the first-generation measures were associated only with women. No sex-specific effects were identified for PhenoAge or GrimAge accelerations. In this cross-sectional assessment, the second-generation clocks show promise as markers of biological aging, with higher epigenetic age acceleration observed in RA cases compared with healthy controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.