Abstract

Using data from a longitudinal cohort of children, we examined whether epigenetic age acceleration (EAA) was associated with pubertal growth and whether these associations were mediated by adiposity. We examined associations between EAA at approximately 10 years of age with pubertal growth metrics, including age at peak height velocity (PHV), PHV, and sex steroid levels and whether these associations were mediated by measures of adiposity including body mass index (BMI) and MRI-assessed visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Children (n = 135) with accelerated EAA had higher PHV (β 0.018, p = 0.0008) although the effect size was small. The association between EAA and age at PHV was not significant (β − 0.0022, p = 0.067). Although EAA was associated with higher BMI (β 0.16, p = 0.0041), VAT (β 0.50, p = 0.037), and SAT (β 3.47, p = 0.0076), BMI and VAT did not mediate associations between EAA and PHV, while SAT explained 8.4% of the association. Boys with higher EAA had lower total testosterone (β − 12.03, p = 0.0014), but associations between EAA and other sex steroids were not significant, and EAA was not associated with sex steroid levels in girls. We conclude that EAA did not have strong associations with either age at onset of puberty or pubertal growth speed, although associations with growth speed were statistically significant. Studies with larger sample sizes are needed to confirm this pattern of associations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.