Abstract
Polyphenolic components of green tea, such as epigallocatechin-3-gallate (EGCG), have potent anti-inflammatory properties. We previously showed that EGCG inhibits tumor necrosis factor-alpha (TNF-alpha)-mediated activation of the nuclear factor-kappa B (NF-kappa B) pathway, partly through inhibition of I kappa B kinase (IKK). The NF-kappa B pathway may also be activated in response to interleukin-1 beta (IL-1 beta) stimulation through a distinct signal transduction pathway. We therefore hypothesized that EGCG inhibits IL-1 beta-mediated activation of the NF-kappa B pathway. Because the gene expression of interleukin-8 (IL-8), the major human neutrophil chemoattractant, is dependent on activation of NF-kappa B, IL-8 gene expression in human lung epithelial (A549) cells treated with human IL-1 beta was used as a model of IL-1 beta signal transduction. The EGCG markedly inhibited IL-1 beta-mediated IL-1 beta receptor-associated kinase (IRAK) degradation and the signaling events downstream from IRAK degradation: IKK activation, I kappa B alpha degradation, and NF-kappa B activation. In addition, EGCG inhibited phosphorylation of the p65 subunit of NF-kappa B. The functional consequence of this inhibition was evident by inhibition of IL-8 gene expression. Therefore, the green tea polyphenol EGCG is a potent inhibitor of IL-1 beta signal transduction in vitro. The proximal mechanisms of this effect involve inhibition of IRAK-dependent signaling and phosphorylation of p65.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.