Abstract

Amyloid-β (Aβ) production and clearance in the brain is a crucial focus of investigations into the pathogenesis of Alzheimer disease. Imbalance between production and clearance leads to accumulation of Aβ. The important Aβ-degrading enzymes in the brain are neprilysin (NEP) and insulin-degrading enzyme (IDE), and defective enzyme expression may facilitate Aβ deposition in sporadic late-onset AD patients. It has been suggested that epigallocatechin gallate (EGCG), a member of the catechin family, might be an effective treatment for AD, because it has been shown to elevate NEP expression. Therefore, we examined whether catechins, which are functional components of common foods, could regulate the degradation of Aβ by inducing NEP and IDE expression. We also investigated the role of catechins in activating intracellular signal transduction in astrocytes. Treatment of cultured rat astrocytes with EGCG significantly reduced the expression of NEP, but not IDE, in a concentration- and time-dependent manner. NEP expression in cultured astrocytes was suppressed by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K), and reduced NEP expression was accompanied by an increase of NEP release into the extracellular space (culture medium). Moreover, culture medium from EGCG-treated astrocytes facilitated the degradation of exogenous Aβ. These results suggest that EGCG may have a beneficial effect on AD by activating ERK-and PI3K-mediated pathways in astrocytes, thus increasing astrocyte secretion of NEP and facilitating degradation of Aβ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.