Abstract
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size. EGCG treatment reduced the secretion of both triglycerides and apolipoprotein B-100 (apoB-100) VLDLs but not of transferrin, albumin, or total proteins, indicating that EGCG diverts triglycerides from VLDL assembly to storage in the cytosol. This is further supported by the observed increase in both intracellular degradation of apoB-100 and ubiquitination of the protein (indicative of increased proteasomal degradation) in EGCG-treated cells. EGCG did not interfere with the microsomal triglyceride transfer protein, and the effect of EGCG on the secretion of VLDLs was found to be independent of the LDL receptor. Thus, our results indicate that EGCG promotes the accumulation of triglycerides in cytosolic lipid droplets, thereby diverting lipids from the assembly of VLDL to storage in the cytosol. Our results also indicate that the accumulation of lipids in the cytosol is not always associated with increased secretion of VLDL.
Highlights
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size
The primordial particles increase in size after their formation by a mechanism that is independent of the rate of triglyceride biosynthesis and that involves a fusion between individual droplets
EGCG increases the level of cytosolic lipid droplet assembly In NIH 3T3 cells, EGCG increased the total area of Oil Red Ostained droplets/cell by 3.2 6 1.2-fold
Summary
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size. EGCG treatment reduced the secretion of both triglycerides and apolipoprotein B-100 (apoB-100) VLDLs but not of transferrin, albumin, or total proteins, indicating that EGCG diverts triglycerides from VLDL assembly to storage in the cytosol. Epigallocatechin gallate increases the formation of cytosolic lipid droplets and decreases the secretion of apoB-100 VLDL. VLDLs are assembled in a complex series of events (for reviews, see 11–16), starting with the formation of a primordial particle (pre-VLDL) during the translation and translocation of apolipoprotein B-100 (apoB-100) to the lumen of the endoplasmic reticulum. This step is catalyzed by the microsomal triglyceride transfer protein (MTP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.