Abstract

Hemoglobin (Hb) is effective inducer for lipid oxidation and protein–polyphenol interaction is a well-known phenomenon. The effects of the interaction of (-)-epigallocatechin gallate (EGCG) with Hb on lipid oxidation were rarely elucidated. The detailed interaction between bovine Hb and EGCG was systematically explored by experimental and theoretical approaches, to illustrate the molecular mechanisms by which EGCG influenced the redox states and stability of Hb. EGCG would bind to the central pocket of protein with one binding site to form Hb-EGCG complex. The binding constant for Hb-EGCG complex was 0.34 × 104 M−1 at 277 K, and thermodynamic parameters (ΔH > 0, ΔS > 0 and ΔG < 0) revealed the participation of hydrophobic forces in the binding process. The binding of EGCG would increase the compactness of protein molecule and diminish the crevice near the heme cavity, which was responsible for the reduction of met-Hb to oxy-Hb and inhibition of hemin release from met-Hb. Moreover, EGCG efficiently suppressed Hb-caused lipid oxidation in liposomes and cod muscles, which was possibly attributed to the reduction to oxy-Hb state and declined hemin dissociation from met-Hb. Altogether, our results provide significant insights into the binding of EGCG to redox-active Hb, which represents a novel mechanism for the anti-oxidant capacity of EGCG in human health and is favorable to the applications of natural EGCG in the good quality of Hb-containing products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.