Abstract

One major activity of chemokines is the recruitment of immune cells to sites of infection and inflammation. CD4(+) Th1 cells play critical roles in host defense against pathogens and in the pathogenesis of many immune-mediated diseases. It was reported that epigallocatechin-3-gallate (EGCG) exhibits anti-inflammatory properties, but the mechanisms have not been completely defined. In this study, we found that EGCG markedly decreased recruitment of murine OVA-specific Th1 cells and other inflammatory cells into the airways in a Th1 adoptive-transfer mouse model. In vitro analysis revealed that EGCG inhibited CXCR3 ligand-driven chemotaxis of murine and human cells. Surface plasmon resonance studies revealed that EGCG bound directly to chemokines CXCL9, CXCL10, and CXCL11. These results indicated that one anti-inflammatory mechanism of EGCG is binding of proinflammatory chemokines and limiting their biological activities. These findings support further development of EGCG as a potent therapeutic for inflammatory diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.