Abstract

Epigallocatechingallate (EGCG) is the major polyphenol in green tea, to which many anticancer features, such as antioxidative, antigenotoxic, and antiangiogenetic properties, are attributed. Moreover, it is also well known as a telomerase inhibitor. In this work, we have chronically treated U251 glioblastoma cells with low, physiologically realistic concentrations, of EGCG, in order to investigate its effects both on telomeres and on genome integrity. Inhibition of telomerase activity caused telomere shortening, ultimately leading to senescence and telomere dysfunction at 98 days. Remarkably, we have observed DNA damage through an increase of phosphorylation of γ-H2AX histone and micronuclei also with doses and at timepoints when telomere shortening was not present. Therefore, we concluded that this DNA damage was not correlated with telomere shortening and that EGCG treatment induced not only an increase of telomere-shortening-induced senescence but also telomere-independent genotoxicity. This study questions the common knowledge about EGCG properties, but confirms the few works that indicated the clastogenic properties of this molecule, probably due to DNA reductive damage and topoisomerase II poisoning. Environ. Mol. Mutagen., 60:683-692, 2019. © 2019 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.