Abstract

In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG) on cyclic nucleotide production and vasodilator-stimulated phosphoprotein (VASP) phosphorylation in collagen (10 µg/mL)-stimulated platelet aggregation. Washed platelets (10(8)/mL) from Sprague-Dawley rats (6-7 weeks old, male) were preincubated for 3 min at 37°C in the presence of 2 mM exogenous CaCl(2) with or without EGCG or other materials, stimulated with collagen (10 µg/mL) for 5 min, and then used for the determination of intracellular cytosolic Ca(2+) ([Ca(2+)](i)), thromboxane A(2) (TXA(2)), adenosine 3',5'-cyclic monophosphate (cAMP), guanosine 3',5'-cyclic monophosphate (cGMP), and VASP phosphorylation. EGCG dose-dependently inhibited collagen-induced platelet aggregation by inhibiting both [Ca(2+)](i) mobilization and TXA(2) production. Of two aggregation-inhibiting molecules, cAMP and cGMP, EGCG significantly increased intracellular levels of cAMP, but not cGMP. EGCG-elevated cAMP level was decreased by SQ22536, an adenylate cyclase inhibitor, but not by etazolate, a cAMPspecific phosphodiesterase inhibitor. In addition, EGCG elevated the phosphorylation of VASP-Ser(157), a cAMP-dependent protein kinase (A-kinase) substrate, but not the phosphorylation of VASP-Ser(239), a cGMP-dependent protein kinase substrate, in intact platelets and collagen-induced platelets, and VASP-Ser(157) phosphorylation by EGCG was inhibited by both an adenylate cyclase inhibitor SQ22536 and an A-kinase inhibitor Rp-8-Br-cAMPS. We have demonstrated that EGCG increases cAMP via adenylate cyclase activation and subsequently phosphorylates VASP-Ser(157) through A-kinase activation to inhibit [Ca(2+)](i) mobilization and TXA(2) production on collagen-induced platelet aggregation. These results strongly indicate that EGCG is a beneficial compound elevating cAMP level in collagen-platelet interaction, which may result in the prevention of platelet aggregation-mediated thrombotic diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.