Abstract

Benzo[a]pyrene (B[a]P) and related procarcinogens found in cigarette smoke and roasted foodstuff require metabolic activation to build mutagenic DNA adducts that may cause tumor diseases like colorectal cancer. The major B[a]P-activating enzymes belong to the cytochrome-P450 (CYP)-1 family and are regulated by the aryl hydrocarbon receptor (AhR). Previous studies have indicated that an inhibition of AhR is accompanied with a reduced metabolic activation of B[a]P and therefore may act protective against carcinogenesis. We investigated if the green tea flavonoid (−)-epigallocatechin-3-gallate (EGCG), a known AhR inhibitor, is able to influence B[a]P-metabolizing and B[a]P–transporting enzymes in human Caco-2 colon carcinoma cells. Strikingly, treatment with EGCG did neither affect constitutive and B[a]P-inducible expression of CYP1A1 and UDP-glucuronosyltransferase (UGT)-1A1 nor overall CYP1 and UGT enzyme activities, indicating that EGCG does not antagonize the AhR in Caco-2 cells. Since flavonoids were also identified to enhance the activity of B[a]P-carrying transporter, we analyzed if EGCG exposure alters cellular excretion of B[a]P conjugates. In contrast to the positive control fisetin, EGCG did not affect cellular excretion of B[a]P metabolites. Our data provide evidence that EGCG does not alter the metabolism and transport of B[a]P in Caco-2 cells, and thus may not protect against procarcinogenic food contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call