Abstract

Homeostasis of continuously renewing adult tissues, such as the epidermis of the skin, is maintained by epidermal stem cells (EpiSC), which are a small population of undifferentiated, self-renewing basal keratinocyte cells that produce daughter transit amplifying (TA) cells to make up the majority of the proliferative basal cell population in the epidermis. We have isolated EpiSC from neonatal and adult skin, and shown that these cells can regenerate an epidermis that lasts long term in vitro and in vivo, and that permanently expresses a recombinant gene in the regenerated tissue (Bickenbach and Dunnwald, 2000; Dunnwald et al., 2001). When we injected murine EpiSC into the developing blastocyst environment of the mouse, we found that both neonatal and adult EpiSC retained some ability to participate in the formation of tissues from all three germ layers (Liang and Bickenbach, 2002; Bickenbach and Chinnathambi, 2004; Liang et al., 2004). Although it appears evident that EpiSC act as pluripotent stem cells, how this reprogramming takes place is not understood. EpiSC might directly transdifferentiate into other cell types or they might first dedifferentiate into a more primitive cell type, and then proceed to develop along a cell lineage pathway. To begin to unravel this, we co-cultured EpiSC with embryonic stem (ES) cells, and found that EpiSC could alter their cell lineage protein expression to that of a more primitive cell type. We also placed EpiSC in a wounded environment and found that EpiSC interacted with the mesenchymal cells repopulating the wound bed. Our findings indicate that the population of cells that we isolate as EpiSC has a pluripotent capability. This has led us to postulate a paradigm shift for somatic stem cells. We propose that tissues maintain a sequestered population of uncommitted stem cells that retain a regenerative response which is enhanced when the cells are exposed to developmental or stress influences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.