Abstract

There are many studies devoted to the role of hair follicle stem cells in wound healing as well as in follicle self-restoration. At the same time, the influence of the inflammatory cells on the hair follicle cycling in both injured and intact skin is well established. Immune cells of all wound healing stages, including macrophages, γδT cells, and Tregs, may activate epidermal stem cells to provide re-epithelization and wound-induced hair follicle neogenesis. In addition to the ability of epidermal cells to maintain epidermal morphogenesis through differentiation program, they can undergo de-differentiation and acquire stem features under the influence of inflammatory milieu. Simultaneously, a stem cell compartment may undergo re-programming to adopt another fate. The proportion of skin resident immune cells and wound-attracted inflammatory cells (e.g., neutrophils and macrophages) in wound-induced hair follicle anagen and plucking-induced anagen is still under discussion to date. Experimental data suggesting the role of reactive oxygen species and prostaglandins, which are uncharacteristic of the intact skin, in the hair follicle cycling indicates the role of neutrophils in injury-induced conditions. In this review, we discuss some of the hair follicles stem cell activities, such as wound-induced hair follicle neogenesis, hair follicle cycling, and re-epithelization, through the prism of inflammation. The plasticity of epidermal stem cells under the influence of inflammatory microenvironment is considered. The relationship between inflammation, scarring, and follicle neogenesis as an indicator of complete wound healing is also highlighted. Taking into consideration the available data, we also conclude that there may exist a presumptive interlink between the stem cell activation, inflammation and the components of programmed cell death pathways.

Highlights

  • As an outmost barrier of the organism, the skin has multiple functions, including a vitally important protective mission

  • There is a close interplay between the activation of epidermal stem cells (EpiSC), HF stem cells (HFSCs), as a whole and wound-induced hair neogenesis (WIHN) as its particular manifestation with the participation of wound healing via inflammatory cells, mediators, and dsRNA

  • There are new data suggesting that apoptotic cells are not inert: they may trigger genes associated with wound healing, proliferation, and a decrease in inflammation in adjacent cells (Medina et al, 2020)

Read more

Summary

Introduction

As an outmost barrier of the organism, the skin has multiple functions, including a vitally important protective mission. Exposure of a culture of keratinocytes to TNF-α led to the expression of chemokines, cytokines, growth factors, and cell surface receptors, which can in vivo attract hematopoietic cells, monocytes, macrophages, and neutrophils, as well as memory T-cells that provide an innate immune response (Banno et al, 2004).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call