Abstract

The development of biosensing electronics for real-time sweat analysis has attracted increasing research interest due to their promising applications for non-invasive health monitoring. However, one of the critical challenges lies in the sebum interference that largely limits the sensing reliability in practical scenarios. Herein, we report a flexible epidermal secretion-purified biosensing patch with a hydrogel filtering membrane that can effectively eliminate the impact of sebum and sebum-soluble substances. The as-prepared sebum filtering membranes feature a dual-layer sebum-resistant structure based on the poly(hydroxyethyl methacrylate) hydrogel functionalized with nano-brush structured poly(sulfobetaine) to eliminate interferences and provide self-cleaning capability. Furthermore, the unidirectional flow microfluidic channels design based on the Tesla valve was incorporated into the biosensing patch to prevent external sebum contamination and allow effective sweat refreshing for reliable sensing. By seamlessly combining these components, the epidermal secretion-purified biosensing patch enables continuous monitoring of sweat uric acid, pH, and sodium ions with significantly improved accuracy of up to 12 %. The proposed strategy for enhanced sweat sensing reliability without sebum interference shows desirable compatibility for different types of biosensors and would inspire the advances of flexible and wearable devices for non-invasive healthcare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.