Abstract

Pre-eclampsia and intrauterine growth restriction are associated with increased apoptosis of placental villous trophoblast. This may result from placental hypoperfusion, leading to the generation of reactive oxygen species (ROS). Apoptosis can be induced in villous trophoblast following exposure to oxidative stress. Epidermal growth factor (EGF) reduces trophoblast apoptosis resulting from exposure to hypoxia. We hypothesised that exposure to hydrogen peroxide, a potent generator of ROS, would induce apoptosis in term placental villous explants and that this could be reduced by treatment with EGF. Placental explants were taken from normal term pregnancies and exposed to increasing doses of hydrogen peroxide (0-1,000 microM) or to a combination of increasing doses of hydrogen peroxide and EGF (0-100 ng/ml) for either 6 or 48 h. Apoptosis was assessed by TUNEL, proliferation by Ki-67 immunostaining, necrosis by lactate dehydrogenase activity and trophoblast differentiation by human chorionic gonadotrophin (hCG) secretion in conditioned culture media. Immunoperoxidase staining was performed to identify phosphorylated-AKT (p-AKT) and phosphorylated-PI3 kinase (p-PI3k). Exposure to 1,000 microM hydrogen peroxide for 48 h induced apoptosis in placental explants. The increase in TUNEL positive nuclei predominantly localised to syncytiotrophoblast. The amount of apoptosis was reduced to control levels by treatment with 10 and 100 ng/ml EGF. Proliferation of cytotrophoblasts within villous explants was significantly reduced following exposure to 1,000 microM hydrogen peroxide, this was restored to control levels by simultaneous treatment with 10 or 100 ng/ml EGF. Neither exposure to hydrogen peroxide or EGF altered the amount of necrosis. There was increased immunostaining for pPI3K following treatment with EGF. This study shows that apoptosis may be induced in villous trophoblast following exposure to ROS, and demonstrates the anti-apoptotic effect of EGF in trophoblast, the maintenance of which is essential for normal pregnancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.