Abstract
Epidermal growth factor (EGF) has been reported to stimulate carbohydrate, amino acid, and electrolyte transport in the small intestine, but its effects on lipid transport are poorly documented. This study aimed to investigate EGF effects on fatty acid uptake and esterification in a human enterocyte cell line (Caco-2). EGF inhibited cell uptake of [14C]palmitate and markedly reduced its incorporation into triglycerides. In contrast, the incorporation in phospholipids was enhanced. To elucidate the mechanisms involved, key steps of lipid synthesis were investigated. The amount of intestinal fatty acid-binding protein (I-FABP), which is thought to be important for fatty acid absorption, and the activity of diacylglycerol acyltransferase (DGAT), an enzyme at the branch point of diacylglycerol utilization, were reduced. EGF effects on DGAT and on palmitate esterification occurred at 2-10 ng/ml, whereas effects on I-FABP and palmitate uptake occurred only at 10 ng/ml. This suggests that EGF inhibited palmitate uptake by reducing the I-FABP level and shifted its utilization from triglycerides to phospholipids by inhibiting DGAT. This increase in phospholipid synthesis might play a role in the restoration of enterocyte absorption function after intestinal mucosa injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.