Abstract

Epidermal growth factor receptor (EGFR) at membrane microdomains plays an essential role in the growth control of epidermal cells, including cancer cells derived therefrom. Ligand-dependent activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, but to a much lesser degree by other glycosphingolipids. However, the mechanism of the inhibitory effect of GM3 on EGFR tyrosine kinase has been ambiguous. The mechanism is now defined by binding of N-linked glycan having multiple GlcNAc termini to GM3 through carbohydrate-to-carbohydrate interaction, based on the following data: (i) EGFR (molecular mass, approximately 170 kDa) has N-linked glycan with GlcNAc termini, as probed by mAb (J1) or lectin (GS-II); (ii) GS-II-bound EGFR also bound to anti-EGFR Ab as well as to GM3-coated beads; (iii) GM3 inhibitory effect on EGFR tyrosine kinase was abrogated in vitro by coincubation with glycan having multiple GlcNAc termini and in cell culture in situ incubated with the same glycan; and (iv) cells treated with swainsonine, which increased expression of complex-type and hybrid-type glycans with GlcNAc termini, displayed higher inhibition of EGFR kinase by GM3 than swainsonine-untreated control cells. A similar effect was observed with 1-deoxymannojirimycin, which increased hybrid-type structure in addition to major accumulation of high mannose-type glycan. These findings indicate that N-linked glycan with GlcNAc termini linked to EGFR is the target to interact with GM3, causing inhibition of EGF-induced EGFR tyrosine kinase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call