Abstract

Cervical cancer is the second most common cancer in women worldwide. Targeting the epidermal growth factor receptor (EGFR) is a very promising approach since it is overexpressed in about 90% of cervical tumors. Here, we quantified the toxic effect of SE, a targeted toxin consisting of epidermal growth factor (EGF) as targeting moiety and the plant toxin saporin-3, on 3 common human cervical carcinoma cell lines (HeLa, CaSki and SiHa) and recently established lines (PHCC1 and PHCC2) from 2 different individuals. A human melanocytic and a mouse cell line served as negative control. Additionally, we combined SE with saponinum album, a saponin composite from Gypsophila paniculata, which exhibited synergistic properties in previous studies. The cell lines, except for SiHa cells, revealed high sensitivity to SE with 50% cell survival in the range of 5-24.5 nM. The combination with saponin resulted in a remarkable enhancement of cytotoxicity with enhancement factors ranging from 9,000-fold to 2,500,000-fold. The cytotoxicity of SE was clearly target receptor specific since free EGF blocks the effect and saporin-3 alone was considerably less toxic. For all cervical carcinoma cell lines, we evinced a clear correlation between EGFR expression and SE sensitivity. Our data indicate a potential use of targeted toxins for the treatment of cervical cancer. In particular, the combination with saponins is a promising approach since efficacy is drastically improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call