Abstract

Salbutamol, isoproterenol and dopamine stimulate C-AMP production in human retinal pigment epithelium (RPE) cells by activation of β 2-type receptors. Epidermal growth factor (EGF) in contrast does not alter basal levels of C-AMP but elevates in an apparently dose-dependent manner the isoproterenol-induced stimulation of C-AMP. EGF also potentiates the forskolin-induced stimulation of C-AMP but has no effect on the elevation of C-AMP caused by NECA (5′-[ N-ethyl]-carboxamido adenosine), an adenosine A 2-receptor agonist. EGF, isoproterenol and NECA have no effect on basal levels of inositol phosphates (InsPs) in human RPE cells, but EGF specifically elevates the carbachol-induced stimulation of InsPs. The carbachol effect on InsPs is attenuated by the phorbol ester PMA (4β-phorbol 12 myrisate 13-acetate). PMA did not, however, affect the stimulation of C-AMP caused by isoproterenol. The interaction of EGF and C-AMP is further demonstrated in experiments where the incorporation of [ 3H]thymidine into RPE cells was studied, as an index for proliferation. EGF stimulates RPE cell proliferation while isoproterenol and dibutyryl C-AMP nullify the EGF effect. Dibutyryl C-AMP has a negative effect on RPE cell proliferation while isoproterenol is ineffective. The data presented here suggest that after stimulation of EGF receptors, tyrosine-kinase-activated products can influence secondary messenger products produced from activation of β 2-type (linked with C-AMP formation) and muscarinic (linked with InsPs production) receptors in RPE cells. We could find no evidence of an interaction between receptors associated with C-AMP and InsPs/diacylglycerol production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call