Abstract
BackgroundPancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix.MethodsWe tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2.ResultsEGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells.ConclusionAn inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells.
Highlights
Pancreatic adenocarcinoma is a highly invasive neoplasm
The receptor tyrosine kinase epidermal growth factor receptor (EGF-R) and its ligands are over expressed in pancreatic cancer tissues and in pancreatic cancer cell lines [2,3], with coexpression
Capan-1 adhesion to collagen I is inhibited by Epidermal growth factor (EGF) We first examined the ability of Capan-1 cells to adhere to various extracellular matrix components
Summary
Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. In contrast to the role of EGF-R and its ligands on cell proliferation, the mechanisms involved in EGF-R mediated invasiveness in pancreatic cancer cells are unclear. The role of EGF-R signalling with respect to cellular adhesion to extracellular matrix, cellular motility and invasion through extracellular matrix in pancreatic cancer cells are not known. The involvement of EGF-R and related erbB receptor tyrosine kinases in cancer cell invasion is suggested by studies in colon and mammary carcinoma cell lines. Signalling via the erbB family of receptor tyrosine kinases is likely to play an important role in mediating pancreatic cancer invasiveness as well
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.