Abstract

Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. We measured the activity of protein kinase C in A431 cells by determining the incorporation of [32P]phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in [32P] incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phosphorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the [32P] incorporation into threonine-654 reached 50% of the [32P] in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na+/H+ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, we measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na+/H+ exchange by hypertonic medium is independent of protein kinase C activity. Since stimulation of protein kinase C by phorbol diesters results in a decrease in EGF receptor activity, the stimulation of protein kinase C activity by addition of EGF to A431 cells contributes to a feedback mechanism which results in the attenuation of EGF receptor function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.