Abstract
The proliferative responses of cells to mitogens decrease during aging, and this may result from age-related defects in signal transduction in response to mitogens. In this study, we have investigated the age-related alteration of responses to epidermal growth factor (EGF) in cultured human keratinocytes that were senesced in vitro by repeated passage. The stimulation with EGF increased the DNA-binding activity of activator protein 1 (AP-1), an important transcription factor for cell proliferation, in young keratinocytes, whereas the binding activity showed little or slight change in the senescent cells. The induced DNA-binding activity of AP-1 in young cells was inhibited by PD 98059, an inhibitor of MEK, and partially inhibited by GF 109203X, an inhibitor of protein kinase C. Western blot analysis demonstrated that EGF induced dramatic increase in the phosphorylation of EGF receptor (EGFR) and extracellular signal-regulated kinases (ERK) in young cells, while this phosphorylation was much less profound in senescent cells. Finally, the application of EGF to young cells resulted in increased phosphorylation of Fra-2, a Fos protein component of the Jun/Fos heterodimer AP-1 complex. This EGF-induced Fra-2 phosphorylation was attenuated in senescent cells. Taken together, our study suggests that the signal transduction mediated by EGF/ERK pathway is altered in senescent human keratinocytes, and this change may be attributed, in part, to the decreased AP-1 transcription activity observed in senescent keratinocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.