Abstract

One of the fastest cellular responses following activation of epidermal growth factor receptor is an increase in intracellular Ca2+ concentration. This event is attributed to a transient Ca2+ release from internal stores and Ca2+ entry from extracellular compartment. Store-operated Ca2+ channels are defined the channels activated in response to store depletion. In the present study, we determined whether epidermal growth factor activated store-operated Ca2+ channels and further, whether depletion of internal Ca2+ stores was required for the epidermal growth factor-induced Ca2+ entry in human glomerular mesangial cells. We found that 100 nm epidermal growth factor activated a Ca2+-permeable channel that had identical biophysical and pharmacological properties to channels activated by 1 microm thapsigargin in human glomerular mesangial cells or A431 cells. The epidermal growth factor-induced Ca2+ currents were completely abolished by a selective phospho-lipase C inhibitor, U73122. However, xestospongin C, a specific inositol 1,4,5-trisphosphate receptor inhibitor, did not affect the membrane currents elicited by epidermal growth factor despite a slight reduction in background currents. Following emptying of internal Ca2+ stores by thapsigargin, epidermal growth factor still potentiated the Ca2+ currents as determined by the whole-cell patch configuration. Furthermore, epidermal growth factor failed to trigger measurable Ca2+ release from endoplasmic reticulum. However, another physiological agent linked to phospholipase C and inositol 1,4,5-trisphosphate cascade, angiotensin II, produced a striking Ca2+ transient. These results indicate that epidermal growth factor activates store-operated Ca2+ channels through an inositol 1,4,5-trisphosphate-independent, but phospholipase C-dependent, pathway in human glomerular mesangial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.