Abstract

AbstractMonitoring the composition, blood flow properties, and hydration status of human skin can be important in diagnosing disease and tracking overall health. Current methods are largely limited to clinical environments, and they primarily measure properties of superficial layers of the skin, such as the stratum corneum (10–40 µm). This work introduces soft, skin‐like thermal depth sensors (e‐TDS) in designs that seamlessly couple with human skin and measure its thermal properties with depth sensitivity that can extend up to 6 mm beneath the surface. Guidelines for tailoring devices to enable measurements through different effective depths follow from a systematic set of experiments, supported by theoretical modeling. On‐body testing validates the physiological relevance of measurements using the e‐TDS platform, with potential to aid the diagnosis of deep cutaneous and systemic diseases. Specific demonstrations include measurements that capture responses ranging from superficial changes in skin properties that result from application of a moisturizer, to changes in microvascular flow at intermediate depths induced by heating/cooling, to detection of inflammation in the deep dermis and subcutaneous fat in an incidence of a local bacterial infection, cellulitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.