Abstract

Dysfunction of the skin barrier plays a critical role in the initiation and progression of inflammatory skin diseases, such as atopic dermatitis and contact dermatitis. Epidermal biomarkers can aid in evaluating the functionality of the skin barrier and understanding the mechanisms that underlay its impairment. This narrative review provides an overview of recent studies on epidermal biomarkers associated with the function and integrity of the skin barrier, and their application in research on atopic dermatitis and contact dermatitis. The reviewed studies encompass a wide spectrum of molecular, morphological and biophysical biomarkers, mainly obtained from stratum corneum tape strips and biopsies. Lipids, natural moisturizing factors, and structural proteins are the most frequently reported molecular biomarkers. Additionally, corneocyte surface topography and elasticity show potential as biomarkers for assessing the physical barrier of the skin. In contact dermatitis studies, biomarkers are commonly employed to evaluate skin irritation and differentiate between irritant and allergic contact dermatitis. In atopic dermatitis, biomarkers are primarily utilized to identify differences between atopic and healthy skin, for predictive purposes, and monitoring response to therapies. While this overview identifies potential biomarkers for the skin barrier, their validation as epidermal biomarkers for atopic dermatitis and contact dermatitis has yet to be established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.