Abstract

BackgroundVentilator-associated pneumonia (VAP) is a common nosocomial infection in intensive care units (ICUs). The objective of this study was to describe the epidemiology and microbiology of VAP in Polish ICUs from 2013 to 2015, as well as to understand how these depended on the diagnostic methods used to identify VAP pathogens and the clinical strategy for VAP treatment.MethodsThis observational study was carried out in seven Polish adult ICUs. VAP surveillance was based on the European Healthcare-associated Infections Surveillance Network recommendations and was defined as pneumonia occurring more than 48 h after receiving mechanical ventilation, with symptom onset 3 days or more after the hospital stay. Depending on the microbiological diagnostic method, VAP cases were classified as PNEU-1 (positive quantitative culture from minimally contaminated lower respiratory tract specimen such as broncho-alveolar lavage, protected brush or distal protected aspirate) or other VAP cases.ResultsThe incidence of VAP was 8.0% and the incidence density: 12.3/1000 ventilator days. Microbiological diagnosis was made using PNEU-1 in 80 cases (39%); over the study duration, the proportion of cases diagnosed with PNEU-1 increased from 14 to 60% (p < 0.001). The predominant etiologic agents causing VAP were Enterobacteriaceae (32.6%) and non-fermenting Gram-negative bacteria (27.6%). The causative microbe varied significantly depending on the diagnostic method: in cases diagnosed using PNEU-1, Staphylococcus aureus (21.3%) and Klebsiella pneumoniae (12.5%) were the dominant organisms, whereas in other VAP cases, Acinetobacter baumannii (23.8%) was commonly observed. The length of antibiotic treatment in cases diagnosed with PNEU-1 was shorter than for other VAP cases (7.2 vs. 9.1 days, p < 0.005), as was the duration of hospitalization (49 vs. 51.8 days, p < 0.001). Antibiotic resistance was a particular concern for A.baumannii isolates, which were highly resistance to imipenem (70.6%) and meropenem or doripenem (52.9%). K. pneumoniae isolates demonstrated resistance to ampicillin (90.3%), ceftazidime (71.0%) and third-generation cephalosporins (74.2%).ConclusionA change over time was observed in the microbiological diagnostic methods used for patients with VAP. A. baumannii was observed mainly in VAP cases diagnosed using substandard methods (non-PNEU-1). The duration of treatment for VAP patients diagnosed properly using PNEU-1 was shorter.

Highlights

  • Ventilator-associated pneumonia (VAP) is a common nosocomial infection in intensive care units (ICUs)

  • Microbiological diagnosis was made in 80 VAP cases (39%) using PNEU-1and over the study duration, the proportion of VAP cases diagnosed using PNEU-1increased from 14 to 60% (p < 0.001) (Fig. 1)

  • No prior studies in Poland addressed the microbiological diagnostic methods that are most commonly employed for VAP, but on the basis of our results, it seems that quantitative cultures from minimally contaminated lower respiratory tract specimens were relatively rarely applied

Read more

Summary

Introduction

Ventilator-associated pneumonia (VAP) is a common nosocomial infection in intensive care units (ICUs). Intensive care unit (ICU) hospitalizations impose a high risk of acquiring healthcare-associated infection (HAIs), most commonly nosocomial pneumonia (PNEU). One of the most common invasive procedures is intubation, and an artificial respiratory tract eliminates the physiological functions (heating, humidification and purification) of the upper respiratory mucosa, increasing the risk of ventilator-associated PNEU (VAP) [4,5,6,7]. There is a need for local surveillance data, taking into account a detailed analysis of etiologic agents responsible for VAP, which may be highly relevant in implementing local procedures for PNEU prevention [1, 9, 10]. Lower respiratory tract specimens are preferred for microbiological diagnosis of VAP, but invasive sampling may not always be possible. The importance of microbiological diagnosis is underestimated by Polish physicians and it remains underutilized [11, 12], despite the fact that microbiological consult can yield better results from antimicrobial therapy with decreased costs [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call