Abstract

BackgroundAnaplasma phagocytophilum is an obligate intracellular, tick-transmitted bacterium that causes granulocytic anaplasmosis in humans and several mammalian species including domestic ruminants where it is called tick-borne fever (TBF). Different genetic variants exist but their impact with regard to putative differences in host associations and pathogenicity are not yet completely understood.MethodsNatural infections with A. phagocytophilum in a dairy cattle herd in Germany were investigated over one pasture season by using serology, haematology, blood chemistry and polymerase chain reaction (PCR). Sequence analysis of partial 16S rRNA, groEL, msp2 and msp4 genes of A. phagocytophilum was carried out in order to trace possible genetic variants and their relations between cattle, roe deer (Capreolus capreolus) and ticks (Ixodes ricinus) in this area.ResultsIn total 533 samples from 58 cattle, 310 ticks, three roe deer and one wild boar were examined. Our results show (i) typical clinical symptoms of TBF in first-time infected heifers, such as high fever, reduced milk yield, lower limb oedema and typical haematological and biochemical findings such as severe leukopenia, erythropenia, neutropenia, lymphocytopenia, monocytopenia, a significant increase in creatinine and bilirubin and a significant decrease in serum albumin, γ-GT, GLDH, magnesium and calcium; (ii) a high overall prevalence of A. phagocytophilum infections in this herd as 78.9% (15/19) of the naïve heifers were real-time PCR-positive and 75.9% (44/58) of the entire herd seroconverted; and (iii) a high level of sequence variation in the analysed genes with five variants of the 16S rRNA gene, two variants of the groEL gene, three variants of the msp2 gene and four variants in the msp4 gene with certain combinations of these variants.ConclusionsIn cattle particular combinations of the genetic variants of A. phagocytophilum occurred, whereas three roe deer showed different variants altogether. This is indicative for a sympatric circulation of variants in this small geographical region (< 1 km2). Both re- and superinfections with A. phagocytophilum were observed in five cattle showing that infection does not result in sterile immunity. For prevention of clinical cases we suggest pasturing of young, not pregnant heifers to reduce economical losses.

Highlights

  • Anaplasma phagocytophilum is an obligate intracellular, tick-transmitted bacterium that causes granulocytic anaplasmosis in humans and several mammalian species including domestic ruminants where it is called tick-borne fever (TBF)

  • We found a significant increase in the parameters creatinine and bilirubin and a significant decrease in the parameters albumin, γGT, Glutamate dehydrogenase (GLDH), magnesium and calcium between animals at these time points (Table 3)

  • To rule out that fever not explained by A. phagocytophilum was caused by SBV, all blood samples were screened for SBV by polymerase chain reaction (PCR) and serology with the outcome that the complete herd seroconverted in weeks 38–40 in 2011 [33]

Read more

Summary

Introduction

Anaplasma phagocytophilum is an obligate intracellular, tick-transmitted bacterium that causes granulocytic anaplasmosis in humans and several mammalian species including domestic ruminants where it is called tick-borne fever (TBF). Anaplasma phagocytophilum causes granulocytic anaplasmosis in humans, horses, dogs and cats and tick-borne fever (TBF) in ruminants [3]. Few reports on natural infections on herd basis exist They all describe two peaks of clinical cases in spring and autumn, matching the highest activity levels of I. ricinus ticks [6, 9,10,11,12,13]. The objectives were to identify natural infections with A. phagocytophilum in a dairy cattle herd by cytology, serology, haematology, blood chemistry and polymerase chain reaction (PCR) as well as genetic variants of the partial 16S rRNA, groEL (heat-shock protein HSP60, known as caperonin 60), msp and msp (major surface proteins 2 and 4) genes. The results will allow to determine associations between cattle, wild animals and ticks in the area under investigation and to identify effective control measures

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call