Abstract

With the prevalence of COVID-19 infection, the use of mathematical models for infectious diseases has attracted considerable attention. In a previous study, human behavioral strategies are represented using evolutionary game theory and integrated with the SIR model of the COVID-19 epidemic. However, actual COVID-19 infection has an incubation period. In addition, due to viral mutations, the number of infected people is higher in the second and subsequent epidemics than in the first one. In this study, the previous study that uses evolutionary game theory to represent human behavioral selection in the SIR model is extended to the SEIR model. Then, considering the viral mutations, the relationship between the number of infected people and the risk of infection is formulated. The simulation results indicate that, by increasing the infection rate as the infection spread, the maximum number of infected people at each infection peak continued to increase until the maximum number of simultaneously infected people is reached. This finding indicates that the number of infected people is affected by the higher infection rate caused by the virus mutation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.