Abstract

BackgroundThis study aimed to analyse the epidemiological characteristics of bacillary dysentery (BD) caused by Shigella in Chongqing, China, and to establish incidence prediction models based on the correlation between meteorological factors and BD, thus providing a scientific basis for the prevention and control of BD.MethodsIn this study, descriptive methods were employed to investigate the epidemiological distribution of BD. The Boruta algorithm was used to estimate the correlation between meteorological factors and BD incidence. The genetic algorithm (GA) combined with support vector regression (SVR) was used to establish the prediction models for BD incidence.ResultsIn total, 68,855 cases of BD were included. The incidence declined from 36.312/100,000 to 23.613/100,000, with an obvious seasonal peak from May to October. Males were more predisposed to the infection than females (the ratio was 1.118:1). Children < 5 years old comprised the highest incidence (295.892/100,000) among all age categories, and pre-education children comprised the highest proportion (34,658 cases, 50.335%) among all occupational categories. Eight important meteorological factors, including the highest temperature, average temperature, average air pressure, precipitation and sunshine, were correlated with the monthly incidence of BD. The obtained mean absolute percent error (MAPE), mean squared error (MSE) and squared correlation coefficient (R2) of GA_SVR_MONTH values were 0.087, 0.101 and 0.922, respectively.ConclusionFrom 2009 to 2016, BD incidence in Chongqing was still high, especially in the main urban areas and among the male and pre-education children populations. Eight meteorological factors, including temperature, air pressure, precipitation and sunshine, were the most important correlative feature sets of BD incidence. Moreover, BD incidence prediction models based on meteorological factors had better prediction accuracies. The findings in this study could provide a panorama of BD in Chongqing and offer a useful approach for predicting the incidence of infectious disease. Furthermore, this information could be used to improve current interventions and public health planning.

Highlights

  • This study aimed to analyse the epidemiological characteristics of bacillary dysentery (BD) caused by Shigella in Chongqing, China, and to establish incidence prediction models based on the correlation between meteorological factors and BD, providing a scientific basis for the prevention and control of BD

  • Christopher et al estimated that Shigella infection is the second leading cause of diarrhoeal death, with approximately 164,300 deaths caused by BD worldwide in 2015

  • Meteorological data After summarising the previous studies, we found that air temperature, relative humidity, wind speed, sunshine, relative humidity and precipitation have an impact on BD incidence [11,12,13,14, 17]

Read more

Summary

Introduction

This study aimed to analyse the epidemiological characteristics of bacillary dysentery (BD) caused by Shigella in Chongqing, China, and to establish incidence prediction models based on the correlation between meteorological factors and BD, providing a scientific basis for the prevention and control of BD. Bacillary dysentery (BD) is a serious infectious intestinal disease caused by Shigella. BD is one of the most common causes of diarrhoea. Christopher et al estimated that Shigella infection is the second leading cause of diarrhoeal death, with approximately 164,300 deaths caused by BD worldwide in 2015. Of these deaths, 54,900 were of children under the age of 5, accounting for 12.5% of the total [3]. In China, BD imposes a considerable public health burden; nearly 123, 283 cases of bacillary and amoebic dysentery occur on an annual basis, placing this disease within the top five infectious diseases in China in 2016 [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call