Abstract

This paper addresses the spreading behavior of computer viruses across the Internet. Taking into account the power-law degree distribution of the Internet, a novel epidemic model of computer viruses is proposed. The spreading threshold for the model is presented. The global asymptotic stability of the virus-free equilibrium is proved when the threshold is below the unity, whereas the permanence of the virose equilibrium is shown if the threshold exceeds the unity. The influences of different model parameters as well as the network topology on virus spreading are also analyzed. In particular, it is found that (1) a higher network heterogeneity is conducive to the diffusion of computer viruses, and (2) a scale-free network with lower power-law exponent benefits virus spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.