Abstract

Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamical pattern is compatible with critical susceptible-infected-removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such nontrivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a nonmonotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with nontrivial initial conditions. Far from herd immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.