Abstract
Introduction. Optimization of the vaccine-induced T-cell repertoire is one of the strategies to expand the spectrum of protective potential for live attenuated influenza vaccine (LAIV). LAIV cross-protective properties can be improved by introducing the nucleoprotein (NP) gene derived from epidemic parental virus into vaccine strain genome, i.e. by replacing the classical 6:2 genome formula with 5:3. The main objective of the present study was to detail evaluation for virus-specific systemic and tissue-resident memory T-cells subsets in mice immunized with seasonal H1N1 LAIV of the genome formula 6:2 and 5:3. Materials and methods. Two H1N1 LAIV strains with varying NP genes (LAIV 6:2 and LAIV 5:3) were generated using reverse genetics techniques. C57BL/6J mice were immunized intranasally with the vaccine candidates, twice, 3 weeks apart. Cells from the spleen and lung tissues were isolated 7 days after booster immunization to be stimulated with whole H1N1 influenza virus for assessing cytokine-producing memory CD44+CD62L– T-cells as well as expression of CD69 and CD103 surface markers using flow cytometry. Humoral murine serum immunity against H1N1 virus was assessed by ELISA. Results. The LAIV 5:3 vs classical 6:2 vaccine strain carrying the epidemic parental NP gene induced significantly more pronounced humoral immune response against recent influenza virus. The group of mice immunized with LAIV 5:3 demonstrated higher levels of virus-specific CD4+ and CD8+ effector memory T cells (TEM) in the spleen, including a subset of polyfunctional (IFNγ+TNFα+IL-2+) CD4+ TEM, compared to LAIV 6:2 group. Virus-specific memory T cell levels in lung tissues after immunization with LAIV 5:3 vs LAIV 6:2 also tended to increase, but no significant difference in stimulated tissue-resident CD69+CD103– and CD69+CD103+ T cells between the groups were found. Conclusion. Modification of the seasonal LAIV strain genome for updating its epitope composition allowed to enhance the virus-specific T-cell immune response both at systemic level and in lung tissues, thereby shoeing that the effectiveness of the vaccine against circulating influenza viruses can be potentially increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.