Abstract
Epicutaneous exposure to allergenic proteins is an important sensitization route for skin diseases like protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. Environmental allergen sources such as house dust mites contain proteases, which are frequent allergens themselves. Here, the dependency of T-helper (TH) cell recall responses on allergen protease activity in the elicitation phase in mice pre-sensitized via distant skin was investigated. Repeated epicutaneous administration of a model protease allergen, i.e. papain, to the back skin of hairless mice induced skin inflammation, serum papain-specific IgE and TH2 and TH17 cytokine responses in the sensitization sites, and antigen-restimulated draining lymph node cells. In the papain-sensitized but not vehicle-treated mice, subsequent single challenge on the ear skin with papain, but not with protease inhibitor-treated papain, up-regulated the gene expression of TH2 and TH17/TH22 cytokines along with cytokines promoting these TH cytokine responses (TSLP, IL-33, IL-17C, and IL-23p19). Up-regulation of IL-17A gene expression and cells expressing RORγt occurred in the ear skin of the presensitized mice even before the challenge. In a reconstructed epidermal model with a three-dimensional culture of human keratinocytes, papain but not protease inhibitor-treated papain exhibited increasing transdermal permeability and stimulating the gene expression of TSLP, IL-17C, and IL-23p19. This study demonstrated that allergen protease activity contributed to the onset of cutaneous TH2 and TH17/TH22 recall responses on allergen re-encounter at sites distant from the original epicutaneous sensitization exposures. This finding suggested the contribution of protease-dependent barrier disruption and induction of keratinocyte-derived cytokines to the recall responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.